/* $DOC$ $NAME$ Floor() $CATEGORY$ CT3 math functions $ONELINER$ Rounds down a number to the next integer $SYNTAX$ Floor( ) -> nDownRoundedNumber $ARGUMENTS$ number to round down $RETURNS$ the rounded number $DESCRIPTION$ The function Floor() determines the biggest integer that is smaller than . $EXAMPLES$ ? Floor( 1.1 ) // --> 1.0 ? Floor( -1.1 ) // --> -2.0 $STATUS$ Ready $COMPLIANCE$ Floor() is compatible with CT3's Floor(). $PLATFORMS$ All $FILES$ Library is hbct. $SEEALSO$ Ceiling() $END$ */ /* $DOC$ $NAME$ Ceiling() $CATEGORY$ CT3 math functions $ONELINER$ Rounds up a number to the next integer $SYNTAX$ Ceiling( ) -> nUpRoundedNumber $ARGUMENTS$ number to round up $RETURNS$ the rounded number $DESCRIPTION$ The function Ceiling() determines the smallest integer that is bigger than . $EXAMPLES$ ? Ceiling( 1.1 ) // --> 2.0 ? Ceiling( -1.1 ) // --> -1.0 $STATUS$ Ready $COMPLIANCE$ Ceiling() is compatible with CT3's Ceiling(). $PLATFORMS$ All $FILES$ Library is hbct. $SEEALSO$ Floor() $END$ */ /* $DOC$ $NAME$ Sign() $CATEGORY$ CT3 math functions $ONELINER$ Sign of a number $SYNTAX$ Sign( ) -> nSign $ARGUMENTS$ a number $RETURNS$ sign of $DESCRIPTION$ The function Sign() determines the sign of . If is > 0, then Sign() returns 1 If is < 0, then Sign() returns -1 If is == 0, then Sign() returns 0 $EXAMPLES$ ? Sign( 1.1 ) // --> 1 ? Sign( -1.1 ) // --> -1 ? Sign( 0.0 ) // --> 0 $STATUS$ Ready $COMPLIANCE$ Sign() is compatible with CT3's Sign(). $PLATFORMS$ All $FILES$ Library is hbct. $SEEALSO$ $END$ */ /* $DOC$ $NAME$ Log10() $CATEGORY$ CT3 math functions $ONELINER$ Decadic logarithm of a number $SYNTAX$ Log10( ) -> nLogarithm $ARGUMENTS$ number to logarithm $RETURNS$ decadic logarithm of $DESCRIPTION$ The function Log10() calculates the decadic logarithm of , i.e. 10^ == . $EXAMPLES$ ? Log10( 10.0 ) // --> 1.0 ? Log10( Sqrt( 10.0 ) ) // --> 0.5 $STATUS$ Ready $COMPLIANCE$ Log10() is compatible with CT3's Log10(). $PLATFORMS$ All $FILES$ Library is hbct. $SEEALSO$ $END$ */ /* $DOC$ $NAME$ Fact() $CATEGORY$ CT3 math functions $ONELINER$ Calculates faculty $SYNTAX$ Fact( ) -> nFaculty $ARGUMENTS$ number between 0 and 21 $RETURNS$ the faculty of $DESCRIPTION$ The function Fact() calculates the faculty to the integer given in . The faculty is defined as n! = 1*2*...*n and is often used in statistics. Note, that faculties above 21 are too big so that the function must return a -1. $EXAMPLES$ ? Fact( 0 ) // --> 1 ? Fact( 1 ) // --> 1 ? Fact( 4 ) // --> 24 $STATUS$ Ready $COMPLIANCE$ Fact() is compatible with CT3's Fact(). $PLATFORMS$ All $FILES$ Library is hbct. $SEEALSO$ $END$ */